2016 공동추계학술대회
Conference on Geo-Spatial Information

일 시: 2016. 10. 6(목) 14:00~16:00 (튜토리얼)
2016. 10. 7(금) 09:00~18:00 (학술발표)

장 소: 군산대학교 황룡문화관
주 관: (사)한국지형공간정보학회
주최: (사)한국지형공간정보학회, (사)한국공간정보학회
<table>
<thead>
<tr>
<th>시간</th>
<th>제목</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:50 - 16:10</td>
<td>[세션1] 정보 인프라 및 정책</td>
<td>[구두2-1] 좌장: 송홍규(연세대학교), 서동조(서울디지털대학교)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 국제협력 강화와 방재기술허보급권을 위한 중점 국가 선정 및 수요조사 방안 / 정효선, 송홍규, 윤동근 (연세대학교)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 공간정보 응용기기 혁신사례와 정비방안 / 이창경(경산대학교), 이병규(서울대학교), 윤화현(충남대학교), 임현동(국토지리정보원)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 국가 GIS 경영의 글로벌화 방안 / 김철(한국교원대학교)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 공간정보 백데이터 기반기술의 통합 시각화, 정량화 등의 실증서비스 기술 설계에 관한 연구 / 최창범, 정영근, 주태호, 김준희(포토도)</td>
</tr>
<tr>
<td>14:50 - 16:10</td>
<td>[세션2] 정보 활용</td>
<td>[구두2-2] 좌장: 김의명(남서울대학교), 엽정섭(경북대학교)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 스마트 디바이스의 위치정보 기능 활용을 위한 선형(Line) 상관 총출 연구 / 이영미, 유기용, 권철(서울대학교), 지방석(KT 응용기술원 Convergence 연구소)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 중급학 학생, 온라인 항공모니터링을 위한 항공조경정보 센서의 자율 활용 및 분광 라이브러리 적용방법 연구 / 석현우, 송동렬, 백선영, 유세종, 정유진, 권오섭(이)아세아항공)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 최전철 드론을 활용한 생태계원정의 변화 모니터링 연구 / 이동국, 방대식, 윤오준, 이현진(상지대학교, 교신저자)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 한반도에서 세계지구기상 모델에 의한 지지기 편익 및 복구 비교 / 이용강, 강준오(인천대학교)</td>
</tr>
<tr>
<td>14:50 - 16:10</td>
<td>[세션3] 정보 융합</td>
<td>[구두2-3] 좌장: 전화채(백석대학교), 김정욱(서울대학교)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 수면연구에 모니터링을 위한 기존영상기반 스마트폰 영상의 기하보정 / 김휘영, 최정아, 이영명(서울시립대학교)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 대규모 공공간의 스마트 공간 관리릴러 프레임워크 설계 / 김미연(서울디지털대학교)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 다중 센서 융합을 통한 차량 위치 정밀 결정 / 김호준, 이영희(서울시립대학교)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 국방분야 지하공간통합지도 활용방안 / 장용규(한국건설기술연구원)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 휘날리 의사 결정을 위한 멀티센서 무인기 기반 실시간 자동 매핑 시스템 / 권용우, 최정아, 이영명(서울시립대학교)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 토양 내 중급학의 환경모니터링을 위한 분광 라이브러리 구축 연구 / 송동렬, 석현우, 백선영, 유세종, 정유진, 권오섭(이)아세아항공)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- GPS 단독측위 및 상대측위에 의한 신속한 포교정지 / 이석배, 여수정(경남과학기술대학교)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 사공정환도 활성화를 위한 사공 BIM의 적용 분석(인천 제2공항 청사 공사를 예시) / 이석배, 이수정(경남과학기술대학교)</td>
</tr>
<tr>
<td>16:10 - 16:20</td>
<td>휴식</td>
<td></td>
</tr>
</tbody>
</table>
A Study of Change Monitoring in Ecological Restoration Area Using a Rotary-wing Drone

Lee, Dong Gook · Bang, Dea Sick · Yoon, Oh Jun · Lee, Hyun Jik

Abstract

Recently, Request to try to take advantage of the drone in order to generate the spatial information in the field of surveying and GIS has increased. In this paper, aerial photographs taken by drone, it produced a high accuracy of DSM/DEM and orthophoto, analysis and monitoring of change in the ecological restoration area. In addition, analyzed the distribution of vegetation using chronological of high-resolution digital image(RGB) and analyzed terrain change using DSM/DEM in study area. Keywords: Drone, Ecological Restoration Area, Change Analysis, Monitoring

1. 서 론

화전의 드론은 조종성이 좋아 다양한 각도로 촬영이 가능하며, 촬영결과를 통한 자동분석을 통해 생물학적 특성을 이용하여 지형공간정보인 DSM/DEM 및 정밀 영상의 생성이 가능하다. 따라서 본 연구에서는 화전의 드론으로 생성된 지형공간정보를 이용하여 식생 분포의 변화를 분석하고, DSM/DEM을 이용하여 지형 변화에 따라 지형공간정보의 생성이 가능하다.
분석을 수행하고자 하였으며, 준공측량에 대한 드론의 활용 가능성을 검토하고자 하였다.

2. 대상지역 선정 및 기초자료 수집
본 연구의 대상지역은 가평군 안내 노천\아래 생산 내의 생태복원지역으로 Fig. 1과 같으며, 데이터 취득을 위한 드론은 중국 DJI 사의 Inspire 1 V2 모델로 드론 및 카메라의 제원은 Table 1과 같다.
지형공간정보의 생성 및 정확도 분석을 위해서는 2016년 7월에 Network-RTK 방식의 VRS 측량을 이용하여 5개의 지상기준점과 8개의 검사점 측량을 수행하였고, 총 412매의 사진을 고쳐촬영을 통해 취득하였다.

Figure 1. Research Area

Table 1. Specification of Drone and Camera

<table>
<thead>
<tr>
<th>Drone</th>
<th>specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>manufacturer</td>
<td>DJI(China) Inspire 1 V2</td>
</tr>
<tr>
<td>Wing Length</td>
<td>34cm</td>
</tr>
<tr>
<td>weight</td>
<td>2935g (Battery included)</td>
</tr>
<tr>
<td>battery</td>
<td>22.2 V, 4500mAh</td>
</tr>
<tr>
<td>Air Time</td>
<td>About 18 minutes</td>
</tr>
<tr>
<td>Cruising speed</td>
<td>22 m/s</td>
</tr>
<tr>
<td>Take-off and landing radius</td>
<td>About 1m</td>
</tr>
</tbody>
</table>

Table 2. Result of Accuracy Analysis

<table>
<thead>
<tr>
<th>No</th>
<th>dX</th>
<th>dY</th>
<th>dL</th>
<th>dZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.030</td>
<td>0.053</td>
<td>0.061</td>
<td>0.216</td>
</tr>
<tr>
<td>2</td>
<td>0.048</td>
<td>0.077</td>
<td>0.091</td>
<td>0.051</td>
</tr>
<tr>
<td>3</td>
<td>0.155</td>
<td>-0.029</td>
<td>0.158</td>
<td>-0.166</td>
</tr>
<tr>
<td>4</td>
<td>-0.003</td>
<td>-0.015</td>
<td>0.015</td>
<td>0.022</td>
</tr>
<tr>
<td>5</td>
<td>0.190</td>
<td>-0.019</td>
<td>0.181</td>
<td>0.292</td>
</tr>
<tr>
<td>6</td>
<td>0.097</td>
<td>-0.109</td>
<td>0.146</td>
<td>-0.406</td>
</tr>
<tr>
<td>7</td>
<td>0.036</td>
<td>-0.051</td>
<td>0.062</td>
<td>-0.042</td>
</tr>
<tr>
<td>8</td>
<td>0.241</td>
<td>0.015</td>
<td>0.241</td>
<td>0.332</td>
</tr>
<tr>
<td>Average</td>
<td>0.100</td>
<td>0.046</td>
<td>0.121</td>
<td>0.290</td>
</tr>
<tr>
<td>RMSE</td>
<td>±0.129</td>
<td>±0.056</td>
<td>±0.140</td>
<td>±0.328</td>
</tr>
</tbody>
</table>

Figure 2. DEM and Orthophoto Production Results
4. 식생 분포 분석

일반적으로 식생 분포 분석에는 NDVI를 이용하지만, 드론을 활용하여 생성된 정사 영상은 R, G, B 밴드만 보유하고 있어 NIR 밴드를 이용하는 NDVI를 추출할 수 없다. 따라서, RGB 영상만으로 식생을 분류 하는 nEGI(Excessive Green Index) 및 VARI(Visible Atmospherically Resistant Index)를 이용하여 식생을 분류하였다.

\[
nEGI = \frac{2 \times \text{Green} - \text{Red} - \text{Blue}}{2 \times \text{Green} + \text{Red} + \text{Blue}} \tag{1}
\]

\[
VARI = \frac{\text{Green} - \text{Red}}{\text{Green} + \text{Red} - \text{Blue}} \tag{2}
\]

식생 분포 분석은 잔차 DEM 제작을 통해 추출된 대상지역의 생태복원률 지역에 대하여 회전익 드론을 활용하여 생성된 정사영상을 이용하여 식생 분포 분석을 수행하였다. 그 결과 Fig. 3과 같이 나타났으며 nEGI를 이용한 경우 식생 분포가 대상지역의 면적 대비 약 29%, VARI를 이용한 경우 약 10%로 나타났다.

![Figure 3. Classification of Vegetation Distribution](image)

5. 단면 및 토공량 분석

연구 대상지역 내의 생태복원률 지역의 단면 분석은 2014년 6월에 취득된 항공 LiDAR DEM, 2015년 7월에 생산된 고정익 드론 DEM 및 2016년 7월에 취득된 회전익 드론 DEM을 이용하여 수행하였으며, 현황측량 단면도와의 비교 분석을 수행하였다. 그 결과 Fig. 4와 같이 나타났으며, 2015년, 2016년 단면도와 현황측량 단면도가 유사한 형태로 나타나 이는 노천광산의 준공측량에 드론이 활용 가능함을 확인하였다.

![Figure 4. Production and Analysis of Cross-sectional](image)

![Figure 5. Analysis of Earth-volume in Period](image)
4. 결론

본 연구는 화전익 드론을 활용하여 노천광산의 생태복원지역에 대하여 지형변화 모니터링을 수행하고자 하였으며 다음과 같은 결과를 얻을 수 있었다.

첫째, RGB 영상으로 생성된 DSM/DEM은 단면분석 및 토공량 분석을 통하여 정밀한 지형변화 모니터링을 수행할 수 있었다.

둘째, 생태복원 후 현황측량을 통해 단면도 제작 결과와 드론을 활용하여 제작된 단면도의 비교 분석은 유사한 형태로 나타나 화전익 드론을 활용할 경우 저비용으로 단시간에 준공 측량을 수행할 수 있을 것으로 판단된다.

이와 같이 화전익 드론은 노천광산의 변화 모니터링과 준공측량에 활용이 가능할 것으로 판단된다. 그러나, 식생의 분포가 높은 지역에 대해서 지표면의 측정이 어려워 측량 및 GIS 분야에서의 드론 활용에 대한 지속적인 연구가 필요할 것으로 판단된다.

감사의 글

이 논문은 2013년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2013R1A2A2A01068391).

References